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Notes:

• If not mentionned otherwise, sums are performed over sets that are implicitly f ∈ F the N
transcription factors (TFs), s ∈ 2F the 2N promoter states (power set of F) and i from 0 to 2N −1,
the 2N eigenvalues of M

• We simplify the notation of promoter states by noting for instance {A, C} as AC and {f} as f

• The symbol ⊖ denotes the symetric difference between sets: s ⊖ s′ = s ∪ s′ − s ∩ s′

• Units: RNA and protein levels are given as number of molecules (integer values) and TFs quantities
as concentrations.

1



1 Supplementary figures

Figure S1: Relaxation of independencies and symmetries. The robustness of the identified prop-
erty can be tested with respect to deviations from the ideal minimal system by changing concentration
[B], introducing a dependence on B on transitions of A, a cooperation between A and B and or a de-
pendence on A of transcription rate. As in the main article, the behavior of the system is presented in
terms of mean, normalized variance and distribution.

Figure S2: Distributed parameters and larger systems. Association/dissocation rates k0 and
transcription rates ρ are drawn from log-normal probability distributions (left panel). We inspect mean
〈R〉 and normalized variance σR

2/〈R〉2 for systems with 2, 3, 5 and 8 TFs (10 random draws each). It
shows that stochasticity increases with [A] as long as B associations/dissociations (be they distributed)
are sensibly faster when A is unbound and transcription rates sensibly depend on B.
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2 Definition of the model

2.1 Kinetic definition

2.1.1 General case

The model describes the stochastic association and dissociation of an arbitrary number N of transcription
factors (TFs) on the promoter of a gene. Note that, as argued in the main article, this notion of TF can
be generalized to represent also various epigenetic factors. The set of transcription factors is denoted
F and the set of possible states of the promoter is denoted 2F (the powerset of F). For instance, for a
promoter having N = 3 TFs F = {A, B, C}, promoter states are 2F = {∅, A, B, C, AB, AC, BC, ABC}.

The model corresponds to the following set of chemical reactions:






Gs

Ms′,s

−−−→ Gs′ , s 6= s′

Gs
ρs
−→ Gs + R , ∀s

R
γ
−→ ∅

R
ρ̃
−→ R + P

P
γ̃
−→ ∅

(1)

where R and P are RNA and protein molecules and Gs is the gene of interest with its promoter in state
s (eg. GAC represents the promoter with only TFs A and C bound to their target site). The lines of
this chemical system correspond respectively to a change in promoter state (due to an association or a
dissociation of a TF or a complex of TFs), transcription (with a rate ρs that depends on the currents
state s of the promoter), RNA degradation, translation and protein degradation.

We note X(t) the time-dependent transcription rate (if s(t) is the state of the promoter at time t,
then X(t) is simply the value of ρs(t)). We also note R(t) (resp. P (t)) the RNA (resp. protein) level; ie.
the number of R (resp. P) molecules.

Each state-to-state transition rate Ms′,s (being an association rate if s′ ⊃ s and a dissociation rate
if s′ ⊂ s) corresponds to a kinetic constant (noted M0

s′,s) multiplied, only in the case of associations, by
the concentration of the TF (ie. [A], [B] and [C]) or the complex (ie. [AB], [AC], [BC] or [ABC]) that
associates (namely s′ ⊖ s). For instance:

• MABC,AB = [C]M0
ABC,AB is the association rate of TF C when only A and B are on the promoter.

• MAB,ABC = M0
AB,ABC is the dissociation rate of TF C when the other TFs on the promoter are

only A and B.

• MABC,A = [BC]M0
ABC,A is the association rate of complex BC when only TF A is on the promoter.

• MA,ABC = M0
A,ABC is the dissociation rate of complex BC when A is the only other TFs on the

promoter.

Because an association and a dissociation cannot occur at the same time, all Ms′,s where neither s′ ⊃ s
nor s′ ⊂ s but s′ 6= s are necessarily null (eg. MAB,BC = 0).

This defines the 2N × 2N matrix M that contains all the transition rates of promoter state, incorpo-
rating all the kinetic constants (defined in matrix M0) and all the concentrations of free TFs (ie. that
are not in complexes) and complexes. For calculation reasons (cf §3.1), diagonal elements of M and M0

(where s′ = s) are set so that the sum over each colum is null.
For determining concentrations of free TFs and complexes, one can define as parameters of the

system the total concentrations of TFs (either free or within complexes), noted [f∗] for a TF f ∈ F
(eg. [B∗] = [B] + [AB] + [BC] + [ABC]), and a set Θ of chemical reaction describing the interactions

of TFs away from promoter. For instance, Θ = {A + B
K=3

⇄ AB, A + C
K=.1

⇄ AC}. As all TFs are
considered in large quantities, concentrations of free TFs and complexes can be obtained by considering
the steady-state of the chemical system Θ.

2.1.2 Without complexes (un)binding and off-promoter TFs interactions

As in the description provided in the main article and as in [1], it possible to simplify the model by
considering only cases where no interactions occurs between TFs away from promoter (in other words
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Θ = ∅) and where TFs cannot associate/dissociate with the promoter as complexes (meaning that
M0

s′,s = 0 for |s′ ⊖ s| > 1).
In that case, TFs always being free, [f∗] = [f ], ∀f ∈ F and therefore the N -vector [f ]f∈F is directly

a parameter of the system. Also, the definition of the 2N × 2N -matrix M0 where some values are free
parameters and others are imposed can be simplified to a smaller N ×2N -matrix k0 where all parameters
are free. k0

f,s represents the association or dissociation constant of TF f when the promoter is in state s.

Similarly, a N × 2N -matrix k is obtained by multiplying association rates by TFs concentrations. Then,
matrix M is simply a reorganization of k.

All the theoretical derivations of §3 are based on matrix M and are applicable for both cases.

2.2 Energetic reformulation and generalization of thermodynamic approaches

Regulation is classically approached with thermodynamic models [2, 3, 4]. These only focus on the
equilibrium and mean behavior of necessarily closed systems and cannot provide a description of any
kinetic aspects nor represent open systems (ie. that consume energy; as it is the case of most eukaryotic
promoters). We show how our kinetic approach constitutes a generalization of the classical thermody-
namic approaches to regulation. Although it requires more parameters, it makes it possible to study the
stochastic and dynamic aspects of promoters that can include energy-dependent transitions (eg. ATP
hydrolysis).

The master equation formalism, that a kinetic formulation makes possible to apply (cf §3), has been
extensively studied [5, 6] and in particular its energetic signification and the relations between energy
consumption, cycles and oscillations. Here, we apply these notions in the context of gene regulation.

We consider the general formulation of the model provided in §2.1.1 that includes the simpler version
described in the main article.

2.2.1 Classical thermodynamic formulation

Thermodynamic approaches consist in defining a Gibbs free energy differences ∆G for the association of
each TF to DNA and for interactions between TFs (for any pair, triplet, . . . of TFs) [3]. This is equivalent
to define a free energy for all the possible states and corresponds, for our system, to the 2N -vector G.

However, defining G only describes the equilibrium constants for all transitions, that is the ratio
between the two kinetic constants (forward and backward) of the considered reaction. For a transition
from s to s′, the equivalence is given by

Gs′ − Gs = −kBT log
Ms′,s

Ms,s′

(2)

kB is the Boltzmann constant1 and T the temperature. Moreover, by construction, this definition restrains
the matrix M to be free of directed cycles. Indeed, for any cycle consisting of a sequence of n states noted
s0, s1, . . . , sn−2, sn−1, sn (with s0 = sn), considering implicitly a closed system, the free energy difference

along the cycle
∑n−1

p=0 Gsp+1
− Gsp

is necessarily null. Thus,
∑n−1

p=0 −kBT log(Msp+1,sp
/Msp,sp+1

) = 0,
which rewrites

n−1∏

p=0

Msp+1,sp
=

n−1∏

p=0

Msp,sp+1
(3)

So the product of kinetic constants along any cycle is always the same in both directions.

2.2.2 Introducing kinetics

The knowledge of kinetic constants themselves (not their pairwise ratios) requires the energy of the
activation barrier between any two states. We note Ês′,s the energy of the activation barrier between

1Thermodynamic approaches often consider molar quantities and hence use the ideal gas constant R instead of the
Boltzmann constant. As we consider a single promoter, we prefer to use kB.
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states s and s′, stored in a 2N × 2N -matrix Ê (where only values for which s′ ⊃ s or s′ ⊂ s are defined),
considered symmetric for now Ês′,s = Ês,s′ . Then, kinetic constants follow from the Arrhenius equation2

Ês′,s − Gs = −kBT log Ms′,s (4)

And indeed, because Ê is symmetric, equation (4) implies equation (2).

2.2.3 Representing open systems

During the reaction s → s′, for passing the activation barrier, the system receives a certain amount of
energy from thermal fluctuations of its surrounding (ie. Ês′,s − Gs). Then, relaxing from the activation

barrier to the state s′, it immediately releaves another amount of energy (ie. Ês,s′ −Gs′). In the case of

closed systems (Ês′,s = Ês,s′), the resulting energy difference is simply the free energy difference between
the two states (∆G = Gs′ −Gs). Then, when the system returns in state s (either directly or through a
different pathway), the system will have received and released exactly the same amount of energy.

Considering now the system to be open and to receives chemical energy (eg. hydrolysis of an ATP
molecule) during reaction s → s′ simply implies that Ês′,s < Ês,s′ (the difference Ês,s′ − Ês′,s being the
amount of chemical energy received). Then, when returning in state s (either directly or not) the system
will have released more thermal energy than it received, but the surrounding will have lost chemical
energy (eg. due to ATP degradation).

Then, as matrix Ê is not symmetric anymore, we have, for any cycle

n−1∑

p=0

Êsp+1,sp
− Êsp,sp+1

= −kBT log
n−1∏

p=0

Msp+1,sp

Msp,sp+1

(5)

Therefore, a cycle is directed if and only if it includes reactions that consume chemical energy (and
releases of chemical energy, if any, do not counterbalance consumptions).

This property of an energy-independent system to be free of directed cycle is commonly known as
the detailed balance property [5, 6] (also known as reversibility of the Markov chain, micro-reversibility
or abscence of circulation) and refers to the fact that, in that case, each reaction occurs equally in both
directions Ms′,sΛs,0 = Ms,s′Λs′,0 (Λs,0, ∀s ∈ 2F is the steady-state of the system).

3 Theoretical derivations

All derivations in this section stand whatever the definition of matrix M (cf §2).

3.1 Promoter dynamics

The changes of the state s of the promoter (described by the first reaction of the system (1)) follows a
continuous-time Markov process decribed by the master equation

dφ(t)

dt
= Mφ(t) (6)

where φ(t) is the time-dependent probability vector for the promoter state.
This mathematical formalism is commonly used to represent either the stochastic dynamics of a single

entity [5, 6] or the deterministic dynamics of a first order rection (eg. metabolic) network3 [7, 8]. In
both cases, it already received extensive mathematical treatment. In particular, equation (6) can be
solved from the eigendecomposition of matrix M. We note λi (with i ∈ [0; 2N − 1]) the eigenvalues of
M (stored in the 2N -vector λ) and Λi its eigenvectors (stored as columns in the 2N × 2N -matrix Λ).
By construction of matrix M, all the 2N eigenvalues have a negative real part and one of them (noted
λ0) is null4. The corresponding eigenvector Λ0 (when normalized to 1) is simply the steady-state of the
system. Moreover, matrix M being real, all non-real eigenvalues necessarily come in pairs of conjugates
so that the spectrum of M (the repartition of eigenvalues λi on the complex plan) is symmetric.

2Note that, for simplicity, the multiplicative Arrhenius constant on Ms′,s is considered implicitly as an additive constant

in the definition of Ês′,s.
3φ(t) represent the concentration of all species and Ms′,s the rate of the reaction that transforms species s in species s′.
4More rigorously, there is only one null eigenvalue when the system is ergodic; ie. at least one state is reachable from

any other state.
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3.1.1 Eigendecomposition of M

In the general case, the eigendecomposition of M has to be done numerically. But in particular cases of
promoter, an analytical expression of eigenvalues λi and eigenvectors Λi can be obtained:

(i) Two-states promoter: This very simple case (N = 1) corresponds to the assumption of most mod-
els of stochastic gene expression that consider promoter explicitly [9, 10, 11, 12, 13, 14]. Eigenvalues
and eigenvectors are λ0 = 0, λ1 = −koff − kon and Λ0 = [koff, kon], Λ1 = [1,−1]. The steady-state
of the system is then φ(∞) = Λ0/

∑

s Λs,0 = [koff, kon] /(koff + kon).

(ii) Homogeneous cycle: We consider a promoter which transition graph consists of a cycle of n states
(noted s0, s1, . . . , sp, . . . , sn−2, sn−1 in the sequence of the cycle) where all forward rates are equal
(noted kf) as well as all backward rates (noted kb). Outgoing transitions (ie. from a state in
the cycle to any other state than the previous and next states in the cycle) are null. Note that
off-cycle states are unreachable and can therefore be eliminated for simplicity5. This particular
system corresponds to the system considered by [15] and its eigendecomposition is:

{

λi = kf(e
−2πj

n
i − 1) + kb(e

2πj
n

i − 1)

Λsp,i = ep 2πj
n

i
(7)

(j is the complex unit). This draws on the matrix spectrum a circle (or an ellipse) of n regularly
spaced eigenvalues that is tangent to the ordinate axis at 0. It is a regular circle for kb = 0 and
flattens as kb increases. It gets flat (ie. all λi are real) when kb = kf.

Exploring numerically how this circle of λi changes when transitions are inhomogeneous or when
including outgoing transitions indicates that any deviation from the homogeneous, isolated and
irreversible cycle results in a flattening of the circle toward the abscissa axis (data not shown).

3.1.2 Autocorrelation and power spectrum of X(t)

Once the eigenvalues λ and eigenvectors Λ are obtained (either analytically or numerically), rewriting
M = ΛDλΛ

−1 (where Dλ is the diagonal matrix representation of the vector λ), the integration of the
promoter master equation (6) gives:

φ(t + τ) = ΛeDλτΛ−1φ(t) (8)

with τ ≥ 0 for now. Considering the promoter in state s0 at a given instant t0, the expected transcription
rate after a delay τ can be simply deduced from the time evolution of promoter state (8) from φ(t0) =
[δs0,s]s∈2F to φ(t0 + τ). This reads X(t0 + τ) =

∑

s ρs

∑

i Λs,ie
λiτΛ−1

i,s0
. The autocorrelation of process

X(t), noted S̃X(τ) = 〈X(t)X(t + τ)〉, is the expectation of ρs0
X(t0) at steady-state (ie. the sum for all

states s0 weighted by Λ0). Therefore

S̃X(τ) =
∑

s0

ρs0
Λs0,0

[
∑

s

ρs

∑

i

Λs,ie
λiτΛ−1

i,s0

]

(9)

Noting that autocorrelations are even functions S̃X(τ) = S̃X(−τ), replacing eλiτ by eλi|τ | makes the
previous equation valid for any τ ∈ R. Reordering terms of (9), we find that the autocorrelation of the
transcriptional efficiency process is simply written as

{
S̃X(τ) =

∑

i βi
2eλi|τ |

βi =
[∑

s ρsΛs,i

∑

s′ Λ−1
i,s′ρs′Λs′,0

]1/2 (10)

Note that β0 =
∑

s ρsΛs,0 = 〈X〉 is the mean transcription rate.

Taking the Fourier transform of S̃X(τ), remarking that
∫ ∞

−∞
e−α|τ |e−jωτdτ = 2α

α2+ω2 , ∀α ∈ C, we
deduce the power spectrum

SX(ω) =
∑

i

−2λiβi
2

λi
2 + ω2

(11)

5If unreachable states are not eliminated, this does not change the expression of eigenvalues we provide but simply
results in additional eigenvalues and eigenvectors. These characterize the transitions from off-cycle states to on-cycle states
and are not involved when considering a system that starts in an on-cycle state.
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3.2 Implications of energy consumption

3.2.1 Boltzmann factor

Thermodynamic approaches can predict the equilibrium steady-state of energy-independent systems. It
can be shown simply that, for such systems (Ês′,s = Ês,s′), the steady-state solution Λ0 of promoter state
master equation (6) corresponds to the Bolztmann factor used in these approaches: Λs,0 = αe−Gs/kBT

(with α a normalisation constant). Indeed, it verifies Me−G/kBT = 0

∑

s Ms′,se
−Gs/kBT =

∑

s6=s′

[

e
−

Ê
s′,s

−Gs

kBT e
− Gs

kBT

]

−
∑

s′′ 6=s′

[

e
−

Ê
s′′,s′

−G
s′

kBT e
−

G
s′

kBT

]

=
∑

s6=s′

[

e
−

Ê
s′,s

kBT − e
−

Ê
s,s′

kBT

]

= 0

(12)

3.2.2 Energy is necessary (but not sufficient) for periodic activity

A property of interest following the application of this generic Markovian formalism and its energetic
reformulation to regulation is that a promoter needs to consume energy for demonstrating a periodic
activity. Indeed, this property of Markovian systems can be proved (as in [16] for instance) by showing
that when the detailed balance property holds (ie. Ms′,sΛs,0 = Ms,s′Λs′,0), matrix (DΛ0

)−1/2M(DΛ0
)1/2

is symmetric and hence necessarily have real-valued eigenvalues. Matrices (DΛ0
)−1/2 and (DΛ0

)1/2 being
diagonal and real-valued, matrix M also have only real-valued eigenvalues.

So energy-independence prevent any periodic activity (impling that all λi are real). However the
converse assertion is not true: energy consumption do not necessarily leads to oscillations. For instance,
as a counter-example, although matrix M = [[−2, 1, 1, 0]T , [1,−2, 0, 1]T , [1, 0,−2, 1]T , [0, 1, 2,−3]T ] has a
directed cycle and represents a system that effectively consumes energy (Ė = 3.15 10−2 kBT ; cf §3.2.3),
all its eigenvalues are real.

3.2.3 Quantification of energy consumption

Although it is possible, for a given system described with the kinetic formulation, to discriminate if it
contains energy-dependent transitions or not (by the presence of directed cycles), it is however impossible
to determine which of the transitions is so. Conversely, different systems with respect to the energetic
formulation can lead to the same kinetic system and hence have exactly the same behavior. Moreover, a
given energy-dependent transition can occur more or less frequently in the dynamics of the whole system
depending on the other transitions.

However, it is possible to give an expression that quantify concisely energy-dependence for any given
system (even formulated kinetically) and that takes into account the dynamics of the system. This is
the stationary energy consumption rate6, noted Ė

Ė = kBT
∑

s

Λs,0

∑

s′ 6=s

Ms′,s log
Ms′,s

Ms,s′

(13)

3.3 Transmission to RNA and protein levels

We described the stochastic dynamics of molecular complexes at the promoter. Now, we show how these
fluctuations transmit through the subsequent steps of gene expression and affect RNA and protein levels.

3.3.1 Inhomogeneous Poisson processes and birth-and-death processes

Both RNA and protein birth-and-death processes are particular cases of the following scheme

A
ρ̂
−→ A + B, B

γ̂
−→ ∅ (14)

where the level B(t) of B molecules follows an A-mediated inhomogeneous birth-an-death process.

6At steady-state, transition s → s′ occurs at a rate Λs,0Ms′,s and results in a change of free energy of the system of
kBT log Ms′,s/Ms,s′ (cf equation (2)). Summing up for all transitions the rate of energy changes provide the stationary

energy consumption rate Ė (which is null if the system is energy independent).
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Noting the above synthesis and degradation processes B+(t) and B−(t) respectively (being sums of
Diracs, one at each instant of reaction), we have

dB(t)/dt = B+(t) − B−(t) (15)

These two processes being inhomogenous Poisson processes with instantaneous rates ρ̂A(t) and γ̂B(t),
their power spectra are7

{

SB+(ω) = ρ̂2SA(ω) + ρ̂〈A〉

SB−(ω) = γ̂2SB(ω) + γ̂〈B〉
(16)

They consist of the spectrum of the time-dependent rate (ie. Sρ̂A(t)(ω) = ρ̂2SA(ω)) added of a white
noise (ie. a shot noise) term with a power equal to the mean reaction rate (ie. 〈B+〉 = ρ̂〈A〉).

Due to dependencies between processes B+(t) and B−(t), taking the power spectrum of (15) gives
ω2SB(ω) = ρ̂2SA(ω) + ρ̂〈A〉 − γ̂2SB(ω) + γ̂〈B〉. And, because at steady-state ρ̂〈A〉 = γ̂〈B〉, we obtain

SB(ω) =

B-intrinsic
︷ ︸︸ ︷

2γ̂〈B〉
︸ ︷︷ ︸

shot noise

/ (γ̂2 + ω2)
︸ ︷︷ ︸

low-pass filter

+

B-extrinsic
︷ ︸︸ ︷

ρ̂2SA(ω)
︸ ︷︷ ︸

rate fluctuation

/ (γ̂2 + ω2)
︸ ︷︷ ︸

low-pass filter

(17)

separating fluctuations comming from within the system (intrinsic) due to stochastic synthesis/degrada-
tions of B molecules and from outside of the system (extrinsic) due variations of concentration of A.

3.3.2 Autocorrelation and power spectrum of R(t) and P (t)

Applying this principle to the system (1), we obtain

SR(ω) =

[

2γ〈R〉 +
∑

i

−2λiβi
2

λi
2 + ω2

]

(γ2 + ω2)−1 (18)

SP (ω) =

[

Protein
shot noise
︷ ︸︸ ︷

2γ̃〈P 〉 + ρ̃2

[

RNA
shot noise
︷ ︸︸ ︷

2γ〈R〉 +

Promoter dynamics
︷ ︸︸ ︷

∑

i

−2λiβi
2

λi
2 + ω2

]

Promoter→RNA
low-pass filter
︷ ︸︸ ︷

(γ2 + ω2)−1

]

RNA→protein
low-pass filter
︷ ︸︸ ︷

(γ̃2 + ω2)−1 (19)

with 〈P 〉 = ρ̃〈R〉/γ̃ and 〈R〉 = β0/γ.

3.3.3 Normalized variances

The mean and the variance of a signal being contained in its power spectrum8, normalized variances of
promoter efficiency, RNA level and protein level (σX

2/〈X〉2, σR
2/〈R〉2 and σP

2/〈P 〉2 respectively) can
be obtained from power spectra (11), (18) and (19):

σX
2

〈X〉2
=

∑

i6=0

βi
2

β0
2 (20)

σR
2

〈R〉2
=

1

〈R〉
+

∑

i6=0

[
βi

2

β0
2

γ

γ − λi

]

(21)

σP
2

〈P 〉2
=

from protein
low copy number

︷ ︸︸ ︷

1

〈P 〉
︸︷︷︸

Poisson

+

from RNA
low copy number

︷ ︸︸ ︷

1

〈R〉
︸︷︷︸

Poisson

γ̃

γ + γ̃
︸ ︷︷ ︸

RNA→prot.

time-averaging

+

from promoter dynamics
︷ ︸︸ ︷

∑

i6=0

[
βi

2

β0
2

︸︷︷︸

Molecular
interplay

γ

γ − λi

γ̃

γ + γ̃

(

1 +
γ

γ̃ − λi

)

︸ ︷︷ ︸

Promoter→RNA→prot.
time-averaging

]

(22)

This generalizes the well-known expression of protein level normalized variance due to [17] that considered
a set of Ng independent two-states on/off genes. Instanciating our model to this particular system (ie.
using case (i) in §3.1.1) provides the exact same expression.

7For B+(t) for instance, during a unit of time, there are ρ̂〈A〉 events (equivalent to ρ̂〈A〉 pairs of events with a null delay)
and the expected number of pairs of events separated by a delay between τ and τ + dτ is ρ̂2S̃A(τ)dτ . So autocorrelation
is S̃B+ (τ) = ρ̂〈A〉δ(τ) + ρ̂2S̃A(τ) and its the Fourier transform (Wiener-Khinchin theorem) gives (16).

8For any signal ξ(t), Sξ(ω) contains the two first moments: 〈ξ〉2 = 1

2π

R

0
+

0−
Sξ(ω)dω and 〈ξ2〉 = 1

2π

R

+∞

−∞
Sξ(ω)dω
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3.3.4 Distribution

The master equation for the system up to the RNA level is

dφr

dt
= Dρ(φr−1 − φr) + γ((r + 1)φr+1 − rφr) + Mφr (23)

where Dρ is the diagonal matrix representation of ρ and the 2N -vector φr(t) (time-dependence is implicit
in the equation) describes the probability to find the system at a given instant t with r RNA molecules
and in the 2N different promoter states.

The analytical resolution of this master equation is somewhat non-trivial and has only been obtained
for a simple two-state system at equilibrium [13, 14]. In the general case, it has to be done numerically.
In that purpose, using matrices M, Dρ and I (the identity matrix) as blocks of 2N × 2N , we construct
a matrix M′:

M′ =















M γI 0 0 0 . . .

Dρ M 2γI 0 0 . . .

0 Dρ M 3γI 0 . . .

0 0 Dρ M 4γI . . .

0 0 0 Dρ M . . .

...
...

...
. . .

. . .
. . .















(24)

so that the master equation (23) rewrites:

d

dt
[φ0, φ1, φ2, . . . ] = M′[φ0, φ1, φ2, . . . ] (25)

Although matrix M′ is theoretically of infinite size, its definition can be practically restricted to
r < 2 max(ρs)/γ for instance. Indeed, the tail of the RNA distribution is necessarily upper bounded
by the tail of a Poisson distribution of parameter max(ρs)/γ, therefore stopping the definition of M′

significantly higher than max(ρs)/γ guaranties a very negligible inaccuracy
As we are interested in the stationary distribution, we do not need to compute all the eigenvalues and

eigenvectors (only the eigenvector with a null eigenvalue provides the stationary distribution). Moreover,
matrix M′ being very sparse, its numerical resolution by standard iterative techniques can be very
efficient. For instance, obtaining a distribution for the system of figure 4 takes about a second and
generating all the data of figure 4 takes only few minutes on a classical laptop computer.

One can apply the same technique for obtaining the distribution of protein level (ie. building a third
matrix M′′ with M′ as building blocks). But the size of the system makes its resolution practically
inefficient in that case and prevents exploration of parameters. This can be overcome by making use
of coarsening techniques [18] but this imposes to make strong simplifications on the model (eg. on the
birth-and-death processes) that are susceptible to produce inaccuracies.

4 Parameters

Parameter N Kd
A Kd

B [A] [B] koff
A koff

B kon
C koff

C

Value 3 10 10 3 3 0.1 0.2 1/30 1/30
Units nM nM nM nM s−1 s−1 min−1 min−1

Parameter ∆GAB ∆GAC ∆GBC γ γ̃ ρ̃ ρ
Value -2 2 2 1/15 1/30 200 γ̃ [2.5, 3, 3, 4, .1, .1, .1, .1]
Units kcal/mol kcal/mol kcal/mol min−1 min−1 min−1 min−1

Table S1: Parameters for Figure 1 of the main article
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Parameter N Kd
A Kd

B [A] [B] 1/koff
A 1/koff

B

Value 2 0.5 5 [10−2,103] 5 30 60
Units nM nM nM nM s s

Parameter ∆E γ γ̃ ρ̃ ρ
Value 2.5 1/5 1/20 100 γ̃ [0.04, 0.04, 0.4, 0.4]
Units kcal/mol min−1 min−1 min−1 min−1

k
0 =

∅ A B AB

2

6

6

4

3

7

7

5

A a ā a ā

B b bc b̄ b̄c

with a =
koff

A

Kd
A

, ā = koff
A , b =

koff
B

Kd
B

, b̄ = koff
B and c = e−∆E/RT

Table S2: Parameters for Figure 3 of the main article

Parameter N Kd
A Kd

C [A] [C] 1/koff
A 1/koff

C kclose

Value 4 20 1 [0.01,100] [0.01,1000] 20 60 1
Units nM nM nM nM s s s−1

Parameter ∆Gloop ∆GA−A ∆GA−C ∆Gloop−A ∆Eloop−C γ
Value 9 -2 1.5 -5.5 2.5 1/5
Units kcal/mol kcal/mol kcal/mol kcal/mol kcal/mol min−1

Parameter ρ
Value [5,5,10,10, 14,14,14,14, 1,1,3,3, 9,9,9,9]
Units min−1

k0 =

∅ A
1

A
2

A
1

A
2

C A
1

C

A
2

C

A
1

A
2

C

D A
1

D

A
2

D

A
1

A
2

D

C
D

A
1

C
D

A
2

C
D

A
1

A
2

C
D

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

A1 a ā a āg a ā a āg a ā a āg a ā a āg

A2 a a ā āg a a āh āgh a a ā āg a a āh āgh

C c c c c c̄ c̄ c̄h c̄h cp cp cp cp c̄p c̄p c̄hp c̄hp

D d d d d d d d d d̄ d̄l d̄l d̄l2 d̄ d̄l d̄l d̄l2

with a =
koff

A

Kd
A

, ā = koff
A , c =

koff
C

Kd
C

, c̄ = koff
C , d = kclose, d̄ = kclosee∆Gloop/RT ,

g = e∆GA−A/RT , h = e∆GA−C/RT , l = e∆Gloop−A/RT and p = e−∆Eloop−C/RT

Table S3: Parameters for Figure 4 of the main article

Parameter N [A],[B],[C],[D],[E],[F ] and [G] tslow tfast α
Value 7 3 40 40 0.1
Units nM min s

Parameter γ γ̃ ρ̃ ρ
Value 1/10 1/25 1000 γ̃ 6 δA δB (1 + δC)
Units min−1 min−1 min−1 min−1

Table S4: Parameters for Figures 2 and 5 of the main article. NB: The matrix k0 is obtained from the
optimization algorithm described thereafter, using parameters presented in this table. δf is the vector
of 2N elements which s-th element is 1 if f ∈ s and 0 else.
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4.1 Optimization algorithm for the eukaryotic promoter example

Matrix k0 of transition rates is optimized with a Monte Carlo gradient descent algorithm. After a
random initialization of matrix k0 the following is repeated iteratively: 2% of the elements of matrix
k0 are multiplied with independent random variables (ie. reaction energies are added with a normally
distributed random number of s.d.=0.3 kcal/mol). This new matrix is accepted and used for the next
iteration only if it enhances the following optimization criterion:

〈∣
∣
∣
∣

Im(λi)

Re(λi)

∣
∣
∣
∣

〉 ∣
∣
∣
∣

Im(λ1)

Re(λ1)

∣
∣
∣
∣

〈[
tfast
tslow

Re(−λi)
|Im(λ1)|/2π − 1

]2
〉α

where λ0, λ1, . . . , λ2N−1 are the eigenvalues of M sorted in increasing order of their modulus (hence
λ0 = 0). The first term in the numerator promotes for coherent eigenvalues, the second term ensures
that the slowest component is the oscillating one and the denominator is a criterion that leads the mean
of relaxation times of eigenvalues to be faster than the slow oscillating component with a ratio tfast/tslow.
As depicted on figure 2B in the main article, aperiodic eigenvalues are still widely spread over the real
axis and the fastest one have relaxation times as short 6 s.
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